Modal Measurements
TP = True Positive; FP =False Positive; TN=True Negative; FN= False Negative
Accuracy (how good a model is predicting the TP and TN)
accuracy = (TP+TN)/(TP+TN+FP+FN)
Precision (what fraction of true positive in all positive cases)
precision= (TP)/(TP+FP)
True positive rate or Sensitivity or Recall ( Fraction of true positive among actual positive)
True positive rate = sensitivity = recall=(TP)/(TP+FN)
Specificity = True nagtive rate
FPR = (TN)/(TN+FP)
F1 Score
Typically used in measuring performance for binary classification
F1 = 2*(Recall * Precision) / (Recall + Precision)
ROC curve
True positive rate vs false positive rate
AUC (Area under curve in ROC) should be greater then .5 (AUC = 1 mean classifier correctly predicted all the data elements in the data set)